

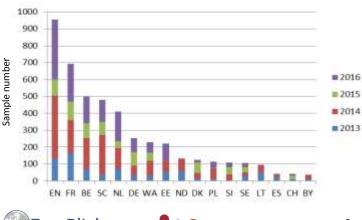
Phytophthora infestans tracking on a European scale

David Cooke, Geert Kessel, Jens G Hansen, Poul Lassen, Sanmohan Baby, Didier Andrivon, Roselyne Corbière + industrial sponsors

Euroblight aims/themes

 Tracking (global) population dynamics of potato blight pathogens:

Change = Trouble

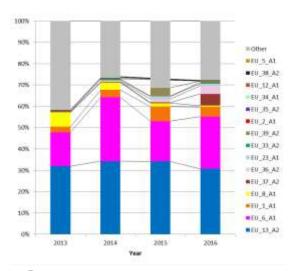

- Stewardship of host resistance genes and active ingredients - develop and adopt innovative and sustainable control strategies on regional scales
- Education, advocacy and communication taking into account different scales and stakeholders

Sample statistics

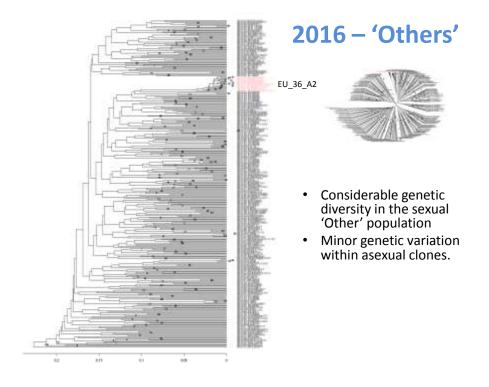
- 2013-2016 5250 samples from 34 countries genotyped
- · Northwestern Europe most frequently sampled

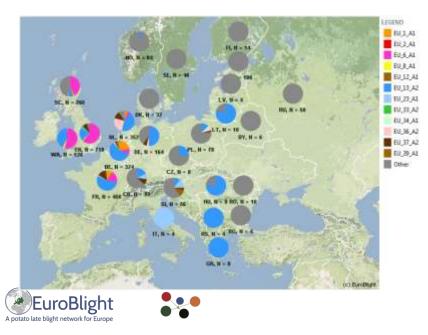
EN – England
FR – France
SC – Scotland
BE – Belgium
NL – the Netherlands
DE – Germany
WA – Wales
ND – Northern Ireland
SE – Sweden
PL – Poland
DK – Denmark
ES – Spain
SI – Slovenia
BY – Belarus

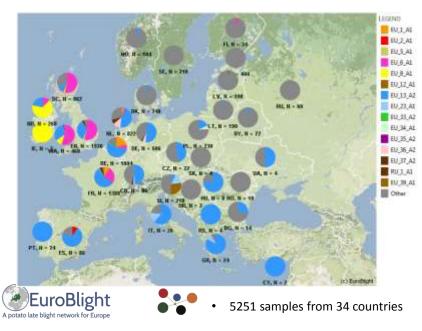
CH – Switzerland EE – Estonia

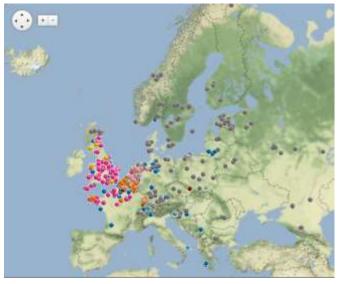

LT – Latvia

Countries with >30 samples shown


EU P. infestans genotype change

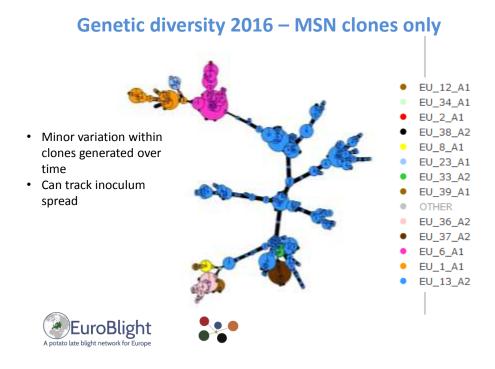

- Around 70% of EU population clonal
- EU_13_A2 & EU_6_A1 dominant
- EU_33_A2 'green 33' very low frequency
- EU_36_A2 & EU_37_A2 novel clones increased in 2016
- 20-30% of population each year genetically diverse 'Other' group probably from oospores.
 The P. infestans "gene pool"



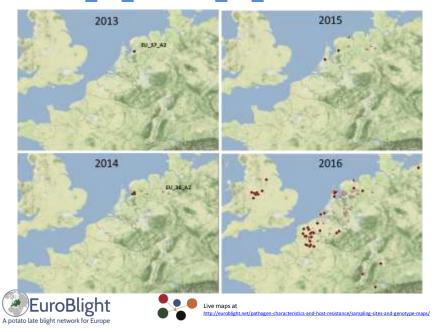

2016 data

2013-2016 summary

2016 samples

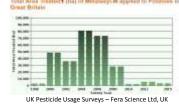

1595 samples from 26 countries

samples – EU_13_A2



samples – EU_6_A1

EU_36_A2 & EU_37_A2 timeline



Population change and blight management

- 13 different fungicide groups on market for blight management
- Careful use required to reduce selection pressure

 EU_13_A2 emerged 2004, resistant to metalaxyl. Usage has fallen dramatically in Europe but it is still a good product where resistance is not dominant

- 33_A2 insensitivity to fluazinam
- 37_A2 insensitivity to fluazinam

Green33 in the Netherlands 2008 - 2012

• Green33

- NL2010: 20%

- NL2011: 22%

- NL2012: 6%

Green33 in recent years

Press release on EU-37-A2

Clones – key questions

Origin – where and how?

- Several first reported in NL and DE
- Presumed recombinant commonly triploid
 (36_A2 triploid, 37_A2 diploid) (see Li et al., 2017 MPMI)

Drivers of spread?

- Adaptation: Mutation Selection: host, fungicide, survival, aggressiveness
- Chance bottleneck, right place at right time

Conclusions

- · New insights on pathogen diversity
- Dominance of a few clones across large areas of European crops shows that EU growers/industry share management challenges
- Surveys needed to inform fungicide use strategies to minimise the risks of product failure – 13_A2, EU_37_A2 and EU_33_A2
- Much primary inoculum is locally generated and spread. Better management of inoculum sources would aid management
- A highly diverse gene pool of novel types is present as a result of sexual oospore formation and derived infections
- High genetic diversity increases the risk of blight management problems - evolving virulence against novel host resistance genes and reduced sensitivity to specific fungicide active ingredients
- Phenotypic traits of existing and novel genotypes being examined in ERA-NET project (IPMBlight2.0)
- Live data mapped on www.euroblight.net

Europe sponsors/contributors/collaborators

ADAMA

Agrifirm

Agriphar

BASF SE

Bayer CropScience AG Belchim Crop Protection

Cortic

Cheminova

CropSolutions

Dupont de Nemours

Emsland Group

Germicopa SAS

HZPC Holland B.V.

Neiker

Nordisk Alkali

PCA

Profytodsd

Syngenta Agro GmbH

UPI

ΔFRI

Agricultural Institute of Slovenia

AHDB Potatoes

Aarhus University*

ARVALIS-Institut du Végétal

Bayerische Landesanstalt für Landwirtschaft

Centre Wallon de Recherches Agronomiques

Estonian University of Life Sciences*

INRA*

The James Hutton Institute*

NIBIO, Norway*

PRI/WUR

Plant Breeding & Acclimatization Inst. (IHAR) Swedish University of Agricultural Sciences

TEAGASC

* Partners in the IPMBlight2.0 project

